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Abstract--Forced convection heat transfer from a cylinder embedded in a packed bed was studied numeri- 
cally. The local volume-averaged conservation equations were used to examine the effects of the governing 
dimensionless parameters : the Reynolds, Darcy, Forchheimer and effective Prandtl numbers. An increase 
in either the Reynolds number or effective Prandtl number resulted in heat transfer enhancement. The 
effect of decreasing Darcy number (Da) was an increase in the Nusselt number. The effect of Forchheimer 
number on heat transfer was found to depend on the product of Darcy and Reynolds numbers (Da RED). 
Through a comparison of numerical predictions with experimental data, effective conductivities were 

extracted and average thermal dispersion effects were quantified. 

INTRODUCTION 

An effective technique for enhancing convective heat 
transfer is to erabed the heat transfer surface in a 
packed bed. The heat transfer enhancement is due to 
the combined effects of the reduced boundary layer 
thickness and increased fluid mixing (thermal dis- 
persion) produced by the porous medium. The 
enhancement in heat transfer is, of course, achieved 
at the expense of additional pressure drop. The present 
paper reports the results of a numerical study of forced 
convective heat transfer from a circular cylinder 
embedded in a packed bed of spherical particles. The 
objectives of this study are to examine the effects 
of various governing parameters and to compare 
the numerical predictions with the results of the 
boundary-layer l:heory and with experimental data. 
Additional motivation for this study stems from the 
fact that few comparisons of numerical predictions 
with experimental data have been presented by pre- 
vious investigators. Such a comparison has been used 
in this study to postulate and quantify a dispersive 
contribution to the effective thermal conductivity of 
the porous medium. The dispersive thermal con- 
ductivity has been calculated by subtracting the stag- 
nant thermal conductivity from the effective thermal 
conductivity required to produce a match between the 
model predictions and the experimental data. 

Theoretical studies (Cheng [1] ; Minkowycz et al. 
[2]) considered heat transfer to or from a cylinder in 
a packed bed, employing the boundary layer approxi- 
mation to the energy equation in conjunction with 
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Darcy's flow model. Numerical studies based on 
Darcy flow were presented by Huang et al. [3] and 
Badr and Pop [4]. A numerical study, accounting for 
non-D.arcian effects, was performed by Murty et al. [5] 
who concluded that heat transfer from an embedded 
cylinder was weakly dependent on Darcy and Forch- 
heimer numbers for Da < 10 -4  and Rep < 200. Fand 
and Phan [6], Fand et al. [7], and Nasr et al. [8] 
reported experimental data on average heat transfer 
coefficients along with various forms of semi-empirical 
correlations to predict the average Nusselt number. 
An expression for the variation of the local Nusselt 
number over an isothermal cylinder embedded in 
porous media with forced flow was given by Cheng 
[11: 

Nuo = 0.5641 Pe°oSx/(20) sin 0(1 - c o s  0)-°5. (1) 

Averaging of the local Nusselt number over the cyl- 
inder surface yields an expression for the average Nus- 
selt number : 

Nu• = 1.0157 Pe~ 2. (2) 

In these expressions, the Nusselt and Peclet numbers 
are based on an effective (volume-averaged) thermal 
conductivity of the porous medium. 

PROBLEM FORMULATION 

Most of the early studies employed Darcy's law 
(applicable when Rep < 1) to model fluid flow through 
packed beds. However, many systems of current inter- 
est involve higher Reynolds numbers as well as imper- 
meable boundaries to confine the flow and the porous 
medium. Hence, inclusion of inertia and boundary 
effects is necessary for improved modeling of the 
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NOMENCLATURE 

A, B Ergun constants 
Cd~so average coefficient of thermal 

dispersion 
Cp specific heat of the fluid 
D cylinder diameter 
Da Darcy number, K/D z 
dp particle diameter 
F inertial coefficient 
Fs Forchheimer number, F D/K 1/2 
H extent of the packed bed in the 

x-direction 
h average heat transfer coefficient of the 

embedded cylinder 
hEx p experimental average heat transfer 

coefficient 
hNum numerical average heat transfer 

coefficient obtained from FIDAP 
K permeability of the porous medium 
ko extrapolated value of effective 

conductivity for zero Peclet number 
kalsp dispersive conductivity 
ken effective thermal conductivity 
kf thermal conductivity of the fluid 
km stagnant effective thermal conductivity 

of the porous medium 
L extent of the packed bed in the 

y-direction 
NUD cylinder averaged Nusselt number, 

h D/kerr 
Nuo local Nusselt number on the cylinder 

surface, qwRO/kefr(T~- Ti) 
Pep average Peclet number, U~D/~e~ 
Pep particle Peeler number, Uo~dp/~r 
Peo local Peclet number on the cylinder 

surface, U~DO/2o~ m 
Pro~ effective Prandtl number, (/~ cp)f/ke~ 
R radius of the cylinder 
ReD Reynolds number, p U~oD/# 
ReD' Reynolds number using the effective 

viscosity, p U~D/IT 

Rep Reynolds number based on the particle 
diameter, p U~dp/~ 

Ti temperature of the approaching fluid 
T~ cylinder surface temperature 
U dimensionless x-direction velocity 

component 
u x-direction component of Darcy's 

filtration velocity 
U~ velocity of the approaching fluid 
V Darcian volume-averaged velocity 

vector 
V dimensionless y-direction velocity 

component 
v y-direction component of Darcy's 

filtration velocity. 

Greek symbols 
a thermal diffusivity 
ae~ effective thermal diffusivity of the 

porous bed, ke~/pcp 
0of thermal diffusivity of the saturating 

fluid, kdpcp 
0~ m stagnant effective thermal diffusivity of 

the porous bed, km/pCp 
fl coefficient of volumetric expansion of 

the fluid 
® dimensionless temperature, 

( T -  T~)/(T~- T~) 
0 angle measured from forward 

stagnation point 
p dynamic viscosity of the fluid 
/~' effective viscosity in the Brinkman 

term 
v kinematic viscosity of the fluid 
q~ bulk porosity of the packed bed 

(porous medium) 
p density of the fluid. 

Superscript 
- average value. 

physical phenomena. These effects are normally 
accounted for by modifying Darcy's law, i.e. adding 
a quadratic term in velocity (inertia effect) and viscous 
shearing stress terms (boundary effect) in the momen- 
tum equations. The inclusion of shear stress terms is 
known as Brinkman's extension, and the quadratic 
inertia term is known as Forchheimer's extension. In 
addition to these extensions of the momentum equa- 
tions, thermal dispersion effects become important at 
high velocities and are accounted for through the use 
of a total effective thermal conductivity in the energy 
equation. In this paper, the aforementioned physical 
mechanisms, non-Darcian effects and thermal disper- 
sion, will be analyzed and highlighted through 
numerical simulations. 

Application of a volume-averaging technique (Slat- 
tery [9] ; Vafai and Tien [10] ; Carbonell and Whitaker 
[11]; Hsu and Cheng [12] ; Kaviany [13]) to the fun- 
damental microscopic transport equations in a porous 
medium results in a system of conservation equations 
on a macroscopic scale. In terms of the Darcian vel- 
ocity and on a macroscopic scale, these local volume- 
averaged equations take on the following form [12] : 

Continuity 
V" (V) = 0 (3) 

Momentum 

(4) 
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Energy 

prc,r(V" V) T = V" (keuVT) (5) 

where V is the Darcian velocity vector, V = ¢kVf. The 
volumetric average fluid phase velocity vector is Vf, 
and p = q~ pf, where pf is the volumetric average pres- 
sure of the fluid. Each term and its relative magnitude 
in the momentum equation is discussed in detail in 
Nasr [18]. The term appearing on the left-hand side 
(LHS) of  the momentum equation represents macro- 
scopic inertia. It is usually less important when com- 
pared to the terras on the RHS, except near the wall 
where the Brinkman frictional effect predominates 
(Lauriat and Vafai [14]). Nield and Bejan [15] presents 
an argument in favor of discarding this term and rec- 
ommend the use of the Forchheimer drag term (quad- 
ratic in velocity) to account for the overall non-linear 
inertia effects. 

The assumptions made in establishing these equa- 
tions are : (1) The flow is steady and incompressible, 
(2) the solid matrix is in thermal equilibrium with the 
fluid, (3) the viscous heat dissipation and volumetric 
heat generation are negligible and (4) the thermo- 
physical properties are independent of temperature. 

The empirical and semi-empirical correlations used 
for the permeability and the inertial coefficient in con- 
junction with the foregoing governing equations are 
given below. As advanced by Ergun [16], Kozeny 
related the permeability to the bed porosity by mode- 
ling the porous medium as a collection of solid spheres 
of diameter d w and proposed that 

K -  ~b3d~ (6) 
A(1-4b) 2' 

The inertia coefficient, F, was shown to depend on the 
porosity and Ergan's coefficients A and B: 

Bq$-l.5 
F - (7) #A 

The values employed for the Ergun coefficients, A and 
B, are 220 and 1.6, respectively. 

It should be noted that the foregoing conservation 
equations are for forced convection flow and do not 
account for any buoyancy effects. In the present study, 
natural convection effects are expected to be negligible 
since the Rayleigh number based on the permeability 
and cylinder diameter, Ram = y fl A T K D/vf~m, is of 
the order of 0.05. 

DIMENSIONLESS EQUATIONS 

The governing equations may be non-dimen- 
sionalized using the following variables : 

x y u v 
V = - -  v=b-S  

T - T i  p 
O -  and P -  

T , -  r i  p U L  " 

On making appropriate substitutions in the dimen- 
sional equations, we get : 

OU OV 
+ ~ = 0 (8) 

1 - - - - ~ U + F s l V ' ~ I U = - o ~ +  V2U (9) 
Da ReD 

1 OP 1 V  2 
DaRe--1--~ V + F s I V ' I V =  -- ff-Y+ Re'D V (10) 

(ao ,9o)_52 ~ l 
U + - ReoPrdfV20 (11) 

where IVml = V / ~ +  W. 
In this study the effective Reynolds number, based 

on the effective viscosity, is taken to be equal to the 
Reynolds number based on the dynamic viscosity. 

A parametric study to examine the effect of each of 
the dimensionless parameters on heat transfer was 
undertaken. In addition, a comparison between 
numerical predictions and experimental data was per- 
formed and used as a basis for quantifying thermal 
dispersion effects. Owing to symmetry, the com- 
putational domain was taken to be half of the physical 
domain. Figure l(a) is a schematic of the com- 
putational problem with the appropriate velocity and 
temperature boundary conditions. It was assumed 
that the confining walls were adiabatic and sufficiently 
far from the surface of  the embedded cylinder 
(L = 6D) to render any influence on heat transfer 
negligible. The boundary conditions for U, V and @ 
are : 

Cylinder surface U =  V = O  and ® =  1 

Domain inlet U =  1, V - O  and @ = 0  

Confining wall U = V = 0 

Symmetry plane V = O. 

VALIDATION OF NUMERICAL PREDICTIONS 

In the present numerical study, the conservation 
equations were solved using the general-purpose finite 
element program FIDAP (FDI [17]), which employs 
a Galerkin-based finite element method. Prior to gen- 
erating the numerical results reported in this paper, 
grid-independence of the results was assessed and the 
predictions were validated against an available ana- 
lytical solution. 

The mesh discretizing the computational domain 
consisted of 1300 nine-noded elements, and is shown 
in Fig. 1 (b). It is a result of a grid refinement study that 
was conducted at ReD = 2800 and Da = 2.0 x 10  - 4  by 
progressively increasing the number of elements until 
no noticeable change in the predicted value of the heat 
transfer coefficient was observed. Fifty nodes were 
considered appropriate on the half-cylinder surface 
since the discretized approximation to the arc length 
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Fig. 1. (a) The computational domain of the physical system and associated boundary conditions and (b) 
the mesh used for the numerical simulations 

was computed to be within 0.05 % of the actual dimen- 
sion of the half-cylinder perimeter (n D/2). A detailed 
discussion of the grid refinement study has been pre- 
sented by Nasr [18]. The layer of boundary elements 
around the cylinder is introduced to capture sharp 
gradients of velocity and temperature in the boundary 
layer around the cylinder. 

The numerical solution of the model equations 
obtained by FIDAP may be compared to, and vali- 
dated against, the boundary-layer solution in con- 
junction with the Darcy flow model, equation (2). The 
flow is considered to be in the Darcy regime when the 
Reynolds number based on the particle diameter is 
less than 1 (Fand et al. [7]). In the Darcy regime, 
thermal dispersion effects may be neglected, and the 
effective thermal conductivity is equivalent to the stag- 
nant conductivity. For  the simulation of flow and heat 
transfer in glass-air and glass-water packed beds, the 
Darcy number was taken as 1 x 10 -4. Stagnant con- 
ductivities for glass-air and glass-water beds were 
obtained using the model of Zehner and Schlt~nder 
[19]. The values employed for the effective Prandtl 
number of the glass-air and glass-water packed beds 
were 0.10 and 0.023, respectively. Quantitatively, the 
deviation between the numerical predictions and the 
boundary layer solution is approximately 2% for low 

ReD and 7% for high ReD. Therefore, the predictions 
were considered to agree well with each other, and the 
numerical results based on F IDAP were considered 
to be acceptable. 

Since an analytical solution for heat transfer incor- 
porating the Darcy-Brinkman-Forchheimer for- 
mulation is unavailable, a direct validation of the 
numerical model for that case could not be performed. 
However, in addition to the comparison with the 
boundary-layer theory predictions, various numerical 
simulations under isothermal conditions were per- 
formed to insure the proper computation of pressure 
drop. As described in detail in Nasr [18], the pressure 
drop predicted by the Darcy-Brinkman-Forchheimer 
formulation of the momentum equations was in excel- 
lent agreement with measured values. These pressure 
drops may be easily computed from a reduced form 
of the streamwise momentum equation in which the 
velocity distribution is considered to be uniform in the 
channel cross section. 

NUMERICAL RESULTS AND DISCUSSION 

In order to illustrate the effects of the Brinkman and 
Forchheimer extensions of the momentum equation, 
numerical simulations were carried out for a Darcy 
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(no inertia or boundary effects), Darcy-Brinkman (no 
inertia effects), and Darcy-Brinkman-Forchheimer 
momentum equation (all effects included). Figure 2 
illustrates the lo,:al predicted Nusselt number as a 
function of angular location measured from the for- 
ward stagnation point, along with the predictions of 
the boundary layer analysis expression, equation (1). 
The results show that the addition of the Brinkman 
term to the Darcy momentum equation resulted in a 
slight decrease in heat transfer (4% decrease in the aver- 
age Nusselt number value). Inclusion of the Forch- 
heimer term in t]ae momentum equation was found 
to cause a more noticeable change in the local Nusselt 
number variation and resulted in a decrease of 3% in 
the average Nusselt number, relative to the Darcy 
momentum equa:Lion. The fluid velocity is relatively 
high (2 m s-1) yielding large inertia effects relative to 
Darcy and Brinkman effects and causing the local 
variation in Nusselt number. An examination of the 
heat transfer characteristics by considering the effect 
of each of the din~Lensionless numbers in the transport 
equations is presented next. The predictions are based 
on the extended Darcy-Brinkman-Forchheimer 
momentum equations. 

Effect o f  Reynolcl',~ number--flow velocity 
Any increase in the cylinder-based Reynolds num- 

ber would enhanc,: heat transfer and cause an increase 

in the average Nusselt number value, h D/kofr. For a 
fixed value of effective Prandtl number, an increase of 
Reynolds number from a value of 50 to a higher value 
of 2000, causes an increase in the Nusselt number by 
a factor of five and a half. This increase agrees closely 
with the prediction of  the boundary layer theory, 
which yields Nu D ~ ReD U2. 

Figure 3 shows the effect of the Reynolds number 
on the temperature profile at an angular location of 
90 °. It is evident that the temperature profile at a 
ReD = 2 is substantially different from that at 
ReD = 50 and that the temperature profiles at 
ReD = 50 are closer to those associated with the higher 
Reynolds number flows. When ReD > 1000, the tem- 
perature drops from its wall value to its free stream 
value within a distance of  only half the cylinder radius. 

Effect o f  Darcy number--permeability effect 
The Darcy number is directly proportional to the 

bed permeability. For  a fixed cylinder diameter, 
different values of Darcy number correspond to 
different permeabilities for the porous medium. The 
permeability is bed-structure dependent and is com- 
monly formulated in terms of particle diameter and 
bed porosity. From the momentum equation, one may 
deduce that as the permeability increases and 
approaches a very large value, equation (9) 
approaches the form of the Navier-Stokes equation. 

D a r c y  M o m e n t u m  E q u a t i o n  

2 4  - . . . .  D a t c y - B r i n k m a n  M o m e n t u m  E q u a t i o n  

\ ............... D a r c y - B f i n k m a n - F o r c h h e i m e t  M o m e n t u m  E q u a t i o n  

iii i ............. . 

0 ' , , • , , , • , , • . . . .  
0 20 40 60 80 100 120 140 160 180 

0 
Fig. 2. Variation of Nusselt number over an embedded cylinder for a Darcy-Brinkman-Forchheimer flow, 

ReD = 1500, Da = I × 10 -4, Profr = 0.1 and for the Darcy-Brinkman-Forchheimer equation Fs = 50. 
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Fig. 3. Temperature profiles at an angular location of 90 ° for a range of Reynolds number values, 

Da = 1 × 10 -4, Fs = 50 and Preer = 0.1. 

In order to examine the effect of  this parameter on 
heat transfer, numerical simulations were performed 
for a wide range of  Darcy numbers. As the Darcy 
number increases, heat transfer from the cylinder 
decreases. Table 1 summarizes the tabulated values 
of  the average Nusselt number which correspond to 
increasing values of  Darcy number from 1 x 10 -4 to 
1. For  convenience, the values of  permeability and 
computed heat transfer coefficients are also tabulated. 
A four-order of  magnitude increase in Da results in 
approximately 35% decrease in the average Nusselt 
number. Although a decrease in the Darcy number 
yields an increase in the Nusselt number, the rate of  
this increase in Nu decreases with decreasing values of  
Da. 

Figure 4 presents the variation of  local Nusselt 
number over half  of  the circumference of  the cylinder. 
The effect of  higher values of  Da is especially pro- 
nounced over the front 90 degrees of  the cylinder 
surface and shows that lower Nusselt numbers are 
obtained for the higher Da values. In essence, the 
effect of  increasing Da is a decrease of  heat transfer 
from the cylinder. 

Effect  o f  Forchheimer number-- inert ia  effects 
It was previously noted that the Forchheimer num- 

ber is inversely proport ional  to the square root of  the 
Darcy number. The effect of  inertia on heat transfer 
was studied for the case of  F = 0 regardless of  the 

Table 1. Darcy number effect on computed average Nusselt number, ReD = 200, 
Pr,n = 0.1 and Fs = 0 

Darcy number Permeability /~ Nu 
Da [m 2] [W m -2 K -l] ~ = h D/k~n 

1 x 10  - 6  2 x 10 -I° 67.28 4.75 
1 x 10 -4 2 x 10 -8 66.69 4.71 
1 x 10 -2 2 x 10 -6 57.95 4.09 

1 2 x 10 -4 44.53 3.14 
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Fig. 4. Effect of Darcy number on the variation of local Nusselt number, Reo = 200, Pro~ = 0.1 and Fs = O. 

Darcy number ;  and for assigned values of Da, thus 
fixed values of  F s  Table 2 summarizes the computed 
average Nusselt numbers obtained from all simu- 
lations. The resul~Is presented in the table reveal that 
the Forchheimer number  influences the average Nus- 
selt number  for all Darcy numbers. An interesting 
observation, however, is that the effect of accounting 
for inertia results in a slight decrease in the value of 
Nu for low Da numbers while the opposite is obtained 
for high Da values. From the momentum equations 
[equations (9) and (10)], it is observed that the product 
of Darcy and Reynolds numbers appears in the dimen- 
sionless Darcy term. Thus, a criterion was sought in 
terms of this product and in relation to the Forch- 

heimer number. It was found that Fs affects Nu if  
(Da ReD) > 1 × 10 -4. Its effect results in an increase 
in Nu for (Da ReD) > 2 x 10 -2, and in a decrease in Nu 
for (Da ReD) < 2 X 10 -2. This criterion is illustrated in 
Fig. 5 where the ratio of average Nusselt numbers 
accounting for inertia (D-B -F )  to those neglecting 
inertia (D-B) effects is plotted against the product of  
Da and ReD. 

Figure 6 illustrates the temperature profiles at an 
angular location of  135 ° . It can be seen that the tem- 
perature profiles for Da = 1 x 10 -4, accounting and 
discarding inertia effects, practically coincide with 
each other. At Da = 1, the two profiles are sub- 
stantially different. 

Table 2. Forchheimer number effect on the average Nusselt number for various Darcy 
and Reynolds number values (Prar = 0.1) 

Darcy number Forchheimer Reo = 200 ReD = 2000 
number Nu = ~ D/k~r Nu = fl D/kar 

1 x 10 -4 0 4.75 14.92 
500 4.75 13.67 

l x 10 -4 0 4.71 14.41 
50 4.60 13.90 

1 x 10 -2 0 4.09 9.54 
5 4.99 19.52 

1 0 3.14 6.70 
0.5 4.60 16.50 
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Fig. 5. Illustration of the effect of accounting for inertia effects, ReD = 200 and Proer = O. 1 

Ef fec t  o f  effective Prandtl  number- -so l id  matr ix  
Results are presented for two different effective 

Prandtl number values of 0.1 and 0.03 representing 
glass-air and aluminum-air beds, respectively. The 
computed average Nusselt numbers for the two values 
of effective Prandtl number are 4.6 and 2.6, respec- 
tively. Thus, a three-fold increase in the effective 
Prandtl number results in approximately 77% 
increase in the average Nusselt number. The boundary 
layer theory predicts a Nusselt number dependence 
on Prandtl number to the one-half power. The ratio 
of the predicted Nusselt numbers (4.6/2.6 = 1.77) is 
close to the square root of the ratio of effective Prandtl 
number values (1.83) predicted by the boundary layer 
theory. The difference between the two cases is best 
illustrated in Fig. 7. It is clear that the temperature 
gradients are larger for the higher values of Proer. The 
difference is quite substantial, particularly for 0 
smaller than 90 ° . 

COMPARISON BETWEEN NUMERICAL AND 
EXPERIMENTAL RESULTS 

Experimentally measured heat transfer coefficients 
for a cylinder embedded in a packed bed have been 
presented previously by Nasr et al. [8]. Numerical 
simulations, using a Darcy-Brinkman-Forchheimer 
formulation of the momentum equation, were carried 

out for conditions identical to those for which the 
experimental data were obtained. The extent of the 
computational domain was made to coincide with the 
actual dimensions of the packed bed test section used 
in collecting experimental data. The inlet velocity was 
taken to be uniform, at a constant room air tempera- 
ture, and having no transverse component. A no-slip 
velocity boundary condition was imposed at the Con- 
fining wall of the test section and on the cylinder 
surface. The cylinder surface temperature was taken 
to be 10 degrees higher than the inlet air temperature, 
thus simulating experimental test conditions. At the 
symmetry line, the gradient of the streamwise velocity 
component was set to zero while the transverse vel- 
ocity component was constrained to be zero. Aside 
from the boundary conditions and thermophysical 
properties, input parameters such as bed porosity, 
inertial coefficient, and bed effective thermal con- 
ductivity are needed. Table 3 summarizes the relevant 
parameters for the packing types used in the exper- 
imental studies. The effective thermal conductivities 
are not tabulated because they were adjusted so that 
a match between numerical predictions and exper- 
imental data was obtained. The permeabilities of 
different beds are of the same order of magnitude but 
differ somewhat from each other due to the different 
particle diameters and bed porosities. 

Numerical simulations may be performed for any 
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Fig. 6. Dependence of temperature profiles on Forchheimer number for two values of Darcy number 

(0 = 135°), Re;) = 200 and Pr~ = 0.1. 

value of the effective thermal conductivity as an input 
parameter in the energy equation. However, only one 
value exists for ke~ that leads to a match between the 
numerically computed heat transfer coefficient and the 
experimentally determined value. Due to the lack of 
knowledge regarding effective thermal conductivities, 
and the absence of quantitative information on ther- 
mal dispersion effects for this physical system, the 
comparison presented here is for different values of  
kefrin order to illustrate the matching process between 
the numerical results and their experimental counter- 
part. 

The comparison between experimental and numeri- 
cal average heat transfer coefficients must be per- 
formed on an average basis, since local heat transfer 
coefficients are not available. Table 4 summarizes 
experimental average heat transfer coefficients along 
with the numerically computed values under the same 
conditions for w;rious systems. In this table and at 
a fixed fluid velocity (particle-based Peclet number), 
several values of effective thermal conductivity were 
used as input tc the numerical simulation until a 
match with the experimental data was achieved. 
Therefore, for a velocity range, one would be able to 
compile a data set of effective thermal conductivities 
which produce a match between numerical and exper- 
imental results. This set will be used as a basis for the 

quantification of thermal dispersion as presented in 
the next section. 

THERMAL DISPERSION 

It is known that the effective thermal conductivity 
of packed beds is enhanced if thermal dispersion 
effects are present (Kuo and Tien [20]; Cheng and 
Vortmeyer [21]). Thermal dispersion is a result of the 
simultaneous existence of temperature and velocity 
gradients within the pores of  the porous medium. An 
attempt to quantify its contribution to heat transfer 
from an embedded cylinder is presented here. 

The effective thermal conductivity may be con- 
sidered to be a superposition of  a stagnant con- 
ductivity (independent of flow) and a flow-dependent 
dispersion conductivity. The matching process 
between experimental and numerical results yielded 
the total effective thermal conductivities. Figure 8 pre- 
sents the ratio of  the effective thermal conductivity to 
the fluid thermal conductivity against the particle- 
based Peclet number for various packed beds. The 
effective thermal conductivity shows a dependence on 
the Peclet number that is fairly linear. Several obser- 
vations regarding the slope and y-intercept of each 
data set can be made from this figure. It is seen that 
the 6 mm nominal diameter glass and nylon beds have 
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Fig. 7. Comparison of temperature profiles for two different values of effective Prandtl number, ReD = 200, 

Da = 1 × 10 -4, and Fs = 50. 

practically the same slope and y-intercept, and that 
the same holds true for the 13 mm nominal  diameter 
glass and nylon beds. A clear dependence on the par- 
ticle diameter is displayed, while the y-intercept 
appears to be independent of the solid thermal con- 
ductivity for the glass and nylon beds. In addition, 
the y-intercept for the 13 mm data falls substantially 
below those for the 3 and 6 ram. A possible expla- 
nat ion is that the 13.53 mm glass particles and 12.7 
mm nylon particles are as large as the cylinder diam- 
eter (12.7 ram), suggesting that the cont inuum treat- 
ment to the problem is inappropriate and volume 

averaging is not  suitable. The dependence of the effec- 
tive thermal conductivity on the solid thermal con- 
ductivity becomes significant when comparing the 
high conductivity bed (aluminum) with the low con- 
ductivity bed (glass). 

For  the quantification of thermal dispersion, a stag- 
nan t  conductivity value is needed. Various models for 
the quantification of the stagnant thermal con- 
ductivity exist in the literature. An extensive com- 
parison of the models'  predictions is presented in Nasr 
[18]. The model of Zehner and Schltlnder [19] is con- 
sidered as well established but  predicts higher values 

Table 3. Relevant parameters used for the numerical studies for the purpose of comparison with 
experimental data 

Material dp [mm] ~b [%] K [m 2] x 10 -s F Da x 10 -4 Fs 

Aluminum 3.24 0.37 0.59 0.48 0.37 78 
6.33 0.38 2.5 0.46 1.58 36 

12.23 0.39 10.6 0.44 6.57 17 
Alumina 2.77 0.36 0.39 0.50 0.24 101 

6.64 0.37 2.5 0.48 1.55 38 
9.62 0,38 5.8 0.46 3.63 24 

Glass 2.85 0,37 0.46 0.48 0.28 89 
6.00 0,37 2.0 0.48 1.27 42 

13.53 0,39 13.0 0.44 8.04 15 
Nylon 6.35 0.37 2.3 0.48 1.42 40 

12.7 0.39 11.4 0.44 7.09 16 
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Table 4. Comparison of experimental and numerical results for various input values of the effective thermal conductivity 

Uoo ~ .  keff [W m-: K-'] hNum -~U~l,. = Nu---'-Num. = 
[m s-i] Pep [W m-/ 'K- ' ]  Prar ["vV m -2 K-l] ~Exp.D/kcn ftNm.D/kcfr 

0.21 27 57.67 0.180 0.103 52.00 4.07 3.67 
[glass 0.205 0.091 55.97 3.57 3.47 

2.85 mm] 0.216 0.086 57.67 3.39 3.39 
2.41 643 224.16 0.240 0.077 218.99 11.86 11.59 
[glass 0.248 0.075 222.68 11.48 11.40 

6.00 mm] 0.251 0.074 224.16 11.34 11.34 
2,4 678 214.41 0.260 0.071 227.36 10.47 11.10 

[nylon 0.235 0.079 217.48 I 1.59 l 1.75 
6.35 ram] 0.227 0.082 213.21 12.00 11.93 

0.229 0.081 214.41 11.89 11.89 

(approx. 20%) of the stagnant conductivities than 
those obtained by extrapolation to zero Pep values. In 
the present situation, the diameter of the cylinder is 
comparable to the diameter of the particles. This situ- 
ation differs considerably from the experimental 
arrangements used in developing models for the stag- 
nant conductivity. Thus, it is believed that an extra- 
polation to zero value of  Pep is an appropriate pro- 
cedure for determining the stagnant conductivity. 
Considering the y-intercept of the best-fit line through 
the data for the effective thermal conductivity as the 
stagnant conductivity, the dispersion conductivity 
may be calculated as the difference between the total 
(effective) and the stagnant values. Numerous inves- 

tigators (Yagi and Kunii [22]; Cheng et al. [23]), 
found that the average value of  the dispersive con- 
ductivity in internal flow configurations may be cor- 
related as a linear function of  the particle-based Peclet 
number, 

kdisp = CdispkfPe p (12) 

where kdi~p is the dispersive thermal conductivity, Pet, 
is the particle-based Peclet number and Cdin is the 
coefficient of  thermal dispersion or thermal disper- 
sivity. In the present study, the coefficient of  thermal 
dispersion was found to be a function of particle- 
to-cylinder diameter ratio. This dependence may be 
correlated for all packing materials by 
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Cdisp = cl (13) 

where Cl and c2 are empirical constants obtained by 
least-squares fitting of the data. Performing such a fit 
led to values of 1.02 x l0 -3 and - 2 . 0  for c~ and c2, 
respectively. On substituting equation (13) into equa- 
tion (12), the following empirical correlation for kdisp 
is obtained : 

kdisp/kf = 1.02 x 10 -3 Pep. (14) 

In order to affirm that such a form is suitable for all 
the packings examined in this study, Fig. 9 plots the 
correlated values, predicted by equation (14), against 
the measured values obtained from (koe-ko)/kf, where 
ko is a y-intercept value of the line plotted through 
each data set shown in Fig. 8. In addition, Fig. 10 
shows the magnitude of the dispersive to fluid con- 
ductivity ratio as a function of the Peclet number. It 
is seen that the dispersive conductivities for the 3 mm 
nominal particle diameter are essentially the same for 
glass and aluminum particles. The same observation 
can be made regarding the 6 and 13 mm nominal 
particles. The dispersive conductivity is shown to be 
independent of the packing material, but exhibits a 
strong dependence on the particle size. 

CONCLUSIONS 

In this paper, heat transfer from an embedded cyl- 
inder was studied numerically. The effects of gov- 
erning dimensionless parameters were presented. The 
local volume-averaged equations, accounting for vis- 
cous and inertia (non-Darcian) effects, were later used 
to compare the numerical predictions with exper- 
imental data and to deduce the contribution of 
thermal dispersion to the total effective thermal 
conductivity. 

Based on the numerical results obtained, an increase 
in Reynolds number was found to enhance heat trans- 
fer. This enhancement was found to be consistent with 
that obtained from the predictions of the boundary 
layer theory, which shows a Nusselt number depen- 
dence on the Reynolds number to the one-half power. 
The effect of increasing Darcy number was found to 
yield a decrease in heat transfer. An increase in Da by 
four orders of magnitude resulted in approximately 
35% decrease in Nu. Although the decrease in the 
Darcy number provided an increase in the Nusselt 
number, the rate of this increase in Nu was found to 
decrease with decreasing values of Da. The Forch- 
heimer number influences the average Nusselt number 
and its effect depends on the magnitude of the product 
of  Da and ReD. The effect of retaining the inertia terms 
in the momentum equation yields an increase in Nu 
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Fig. 9. Predicted vs measured values of the dispersive-to-fluid conductivity ratios for different packed beds. 
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for (Da Reo) > 2 × 10 -2 and a slight decrease for (Da 
Reo) < 2 x 10 -2. As for the influence of  the effective 
Prandtl  number, the Nusselt number increases with 
the Prandtl  number, and this increase is close to that 
predicted by the boundary layer theory. 

The effective tlhermal conductivity, taken to be the 
sum of  the stagnant (independent o f  flow conditions) 
effective conductivity and of  the dispersive (flow- 
dependent) conductivity, was extracted by comparing 
the model  predictions with available experimental 
data. The contribution due to thermal dispersion was 
correlated in terms of  the particle-based Peclet 
number, for which the average coefficient of  thermal 
dispersion was fiaund to depend on the particle-to- 
cylinder diameter ratio. 

It  is noted that thermal dispersion effects were 
deduced as a result of  a comparison made between 
cylinder-average numerical and experimental results. 
Local effects, mainly accounting for porosity variation 
and regarding the effective thermal conductivity as a 
local function of  relevant variables need to be inves- 
tigated in future studies. 
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